FOLLOW US:
TWITTER.COM/REDHATSUMMIT

TWEET ABOUT US:
ADD #SUMMIT AND/OR #JBOWSSWORLD TO THE END OF YOUR EVENT-RELATED TWEET
Large clusters in JBoss

Bela Ban
Red Hat
Sept 2, 2009
Agenda

Scenario:

Clustered web applications
Apache httpd / mod-jk / mod-cluster
Large cluster of JBoss application servers
Large number of clients
Big variance in the number of clients

Issues

Rolling upgrades and static configuration

mod-cluster

Demo (mod-cluster domains in a cloud)
Typical mod_jk based setup
mod_jk configuration (httpd side)

worker.properties:

```properties
worker.jboss1.host=jboss1
worker.jboss2.host=jboss2
worker.jboss3.host=jboss3
...
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=jboss1,jboss2,jboss3
```

uriworkermap.properties:

```properties
/jmx-console/*=loadbalancer
/web-console/*=loadbalancer
/mywebapp/*=loadbalancer
/mynewapp/*=loadbalancer
```
Issues

#1 Large flat cluster

Rolling upgrades are impossible with (binary) incompatible upgrades

- New software (JBoss, 3rd party, application)
- Failures (e.g. network partitions) affect many nodes

#2 Static configuration

workers.properties and uriworkermap.properties have to be modified on all 3 httpd servers when

- a host is added or removed
- a web app is deployed / undeployed

Not good in a cloud environment where hosts are dynamically added or removed
Problem #1: large flat clusters

Most of the down time is caused by upgrades, not crashes

If a new release is binary incompatible, the restarted node won't be able to participate in the cluster

Incompatibilities are caused by

New JBoss version, e.g. 4.2 → 4.3

Individual component upgrades (JGroups, JBossCache)

DB schema changes

JDK upgrades (serialVersionUID)

Application incompatibilities
Issues with large flat clusters cont'd

A node or switch crash affects more nodes

 State transfer, rebalancing of state (Infinispan's DIST mode), merge handling

 RPC's across the cluster might block until a node is marked as crashed

State

 We cannot use total replication for scalability reasons

Communication

 TCP becomes an issue as a message is sent N-1 times
Solution: mod-jk domains

Instead of a large cluster of 1000 nodes, we create 10 domains of 100 nodes each.

httpd creates a new session S on a random node N in a random domain D.

All requests for S go to N in D (if sticky sessions are configured).

If N is shut down or crashes, S is directed to another node within D.

Changes to S are replicated only within D.

If there are no more nodes in D, S is lost.

No replication between domains.

A domain == a JBoss cluster.
mod-jk domains
Rolling upgrades with domains

An *entire domain* is upgraded, not an individual node

Steps

Disable entire domain (mod-jk /status app on httpd)

httpd won't create new sessions on disabled workers

Requests for existing sessions will still be forwarded to disabled workers

When all sessions on a given domain have expired we can shut down all workers, upgrade and restart

httpd can now create new sessions in the upgraded domain

Different domains can have different software versions

DB schema still an issue
mod_jk domain configuration (httpd side)

worker.properties:

worker.jboss1.host=jboss1
worker.jboss1.domain=A
worker.jboss2.host=jboss2
worker.jboss2.domain=A
worker.jboss3.host=jboss3
worker.jboss3.domain=B
worker.jboss4.host=jboss4
worker.jboss4.domain=B

Make sure you separate cluster traffic for A and B !

jboss1: ./run.sh -c all -g A -u 232.1.1.1 -m 7500 -Djboss.jvmRoute=jboss1
jboss2: ./run.sh -c all -g A -u 232.1.1.1 -m 7500 -Djboss.jvmRoute=jboss2
jboss3: ./run.sh -c all -g B -u 232.2.2.2 -m 8500 -Djboss.jvmRoute=jboss3
jboss4: ./run.sh -c all -g B -u 232.2.2.2 -m 8500 -Djboss.jvmRoute=jboss4
Problem #2: static configuration

When a worker is added or removed, we need to modify workers.properties or uriworkermap.properties on all httpd servers

Tedious for large clusters, or dynamically changing clouds

Enter mod-cluster

(Almost) no configuration on the httpd side
Works with httpd 2.2.8+, JBoss AS 5+, JBossWeb 2.2.1 and Tomcat 6
Based on mod-proxy
http://www.jboss.org/mod_cluster
mod-cluster

Workers register *themselves* with httpd server(s)

No more workers.properties

Changes in cluster topology are also sent to httpd

Deployed webapps are automatically registered with httpd, undeployed webapps are un-registered

No more uriworkermap.properties

No 404s for undeployed webapps

Workers send their load factors to httpd, so httpd can forward requests based on actual load

Load computation is pluggable
mod-cluster architecture
mod_cluster configuration (httpd side)

httpd.conf:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule slotmem_module modules/mod_slotmem.so
LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so

<Location /mod_cluster_manager>
 SetHandler mod_cluster-manager
 Order deny,allow
 Deny from all
 Allow from 192.168.1. 127.0.0.1
</Location>
mod_cluster configuration (JBossAS)

JBoss/Server/all/deploy/jbossweb.sar/server.xml:

```xml
<Listener
className="org.jboss.web.tomcat.service.deploymenters.MicrocontainerIntegrationLifecycleListener"
delegateBeanName="HAModClusterService"/>
...

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="${jboss.jvmRoute}">

Copy mod_cluster.sar to JBoss/Server/all/deploy/

JBoss/Server/all/deploy/mod_cluster.sar/META-INF/:

```xml
<bean name="HAModClusterConfig" class="org.jboss.modcluster.config.ha.HAModClusterConfig">
 <!-- Comma separated list of address:port listing the httpd servers where mod_cluster is running -->
 <property name="proxyList">${jboss.modcluster.proxyList:httpd-1:8000,httpd-2:8000}</property>
 <property name="domain">${jboss.Domain:DefaultDomain}</property>
 ...
</bean>```
Starting the JBossAS instances

```
jboss1: ./run.sh -c all -g A -u 232.1.1.1 -m 7500 -Djboss.Domain=A -Djboss.jvmRoute=jboss1
jboss2: ./run.sh -c all -g A -u 232.1.1.1 -m 7500 -Djboss.Domain=A -Djboss.jvmRoute=jboss2
jboss3: ./run.sh -c all -g B -u 232.2.2.2 -m 8500 -Djboss.Domain=B -Djboss.jvmRoute=jboss3
jboss4: ./run.sh -c all -g B -u 232.2.2.2 -m 8500 -Djboss.Domain=B -Djboss.jvmRoute=jboss4
```

We now have 2 clusters (A and B) which have nodes
jboss1 and jboss2 (A) and jboss3 and jboss4 (B)

jboss1 and jboss2 register with httpd under domain A
jboss3 and jboss4 register with httpd under domain B

Every server registers the webapps it serves

The same app doesn't need to be present in all nodes
mod-cluster will only send requests to nodes which have it
Dynamically adding hosts when load increases

httpd has to be reachable from every worker

Every worker has to be reachable from httpd

Domains can have different

Replication config

JBoss/JGroups versions

Webapps deployed (security)

httpd

Users

firewall

Intranet

Internet (additional capacity)

DomainA

DomainB

Worker

Worker

Worker

Worker

Worker
Demo

Start a bunch of nodes in two different domains

→ mod-cluster allows for dynamically adding or removing of nodes to accommodate client traffic

This is all done on Amazon's EC2 cloud service, but of course this can be run on an internal cluster, too
Have we solved our 2 problems now?

Static configuration: yes

 We only configure httpd once (adding modules)

 Every JBoss instance is started with the following props

 jboss.jvmRoute
 jboss.Domain
 jboss.modcluster.proxyList (not necessary if multicast
 advertisements are used)

Rolling upgrades: yes

 Same as mod-jk, with some added features

 shutdown-when-drained.sh (in mod-cluster 1.1)

 Disable, drain and shutdown entire domain (TBD, in JON/JOPR)
 Start and enable entire domain (JON / JOPR)
Conclusion

Divide-and-conquer

Divide large clusters into smaller subclusters (domains) to help rolling upgrades

Use mod-cluster to

Dynamically add / remove nodes to / from a cluster
Dynamically deploy / undeploy webapps
Provide actual load information to help httpd distribute load optimally
Outlook

Optimize JBoss clusters to run in the cloud

(Oftentimes) no multicasting available, large scale

Eliminate the TCP N-1 problem

Instances often don't have a static IP address

Use of JON/JOPR to

Start, stop, disable and enable an entire cluster

Upgrading a domain will be a 3 step process

Drain and shut down the cluster

Upgrade all nodes of the cluster

Start the cluster again

View of a cluster topology, vitals, stats
QUESTIONS?

TELL US WHAT YOU THINK:
REDHAT.COM/JBOSSWORLD-SURVEY